Introduction to the theory of quantum computing and information. Explore the rules of quantum mechanics (qubits, unitary transformations, measurements, density matrices); quantum gates and circuits; entanglement; the Bell inequality; protocols for teleportation, quantum key distribution, and other tasks; basic quantum algorithms such as Shor’s and Grover’s; basic quantum complexity theory; basic quantum error correction; decoherence and the measurement problem; and the challenges of building scalable quantum computers. Previous exposure to quantum mechanics is not required. Prerequisites Computer Science 331 or 331H with a grade of a least C-.

Program: 
Undergraduate Program
Division: 
Electives